STEREOCONTROL OF THE METAL-AMMONIA REDUCTION: FORMATION OF EITHER CIS- OR TRANS-FUSED DECALONES FROM A COMMON INTERMEDIATE.

Robert A. Holton* and Robert M. Kennedy

Dittmer Laboratory of Chemistry1 The Florida State University Tallahassee, Florida 32306 USA

Summary: Octalone 2 is reduced by lithium-ammonia to the cis-fused decalone, whereas octalone Z-undergoes lithium-ammonia reduction to provide exclusively the trans-fused isomer.

We have recently described a new stereospecific annulation,² developed during the course of our studies directed toward aphidicolin (1)³ total synthesis.⁴ This methodology has enabled us to prepare, in two synthetic operation and 67% overall yield, the octalone 2^2 as a model for the aphidicolin AB ring **system.**

In an extension of this model study, we set out to explore the conversion of 2 into the diol 3, having A ring functionality identical to that present in 1. We envisioned that the 2 * 3_ conversion could be accomplished through lithium-ammonia reduction followed by enolate trapping similar to the sequence which has previously been employed in several aphidicolin syntheses. 4a,b,d Furthermore, we anticipated that lithium-ammonia reduction of 2 would also desulfurize C-8 to form the lactone enolate which would serve to protect the lactone from overreduction.

In the event, enone 2 was trea ted with 4 mol equiv of lithium in 5:l ammonia:inf solution containing 0.85 equiv of <u>t</u>-butanol, first at -78°C for **15 min, then at -33°C for 15 min. Excess lithium was quenched with isoprene and the mixture was subsequently treated with aqueous sodium bicarbonate to provide keto ester !,5 mp 200-202"C, in 95% yield.6 The** ' **H NMR spectrum of 4 showed H4, upon irradiation of the C-4 methyl protons, as a doublet at 62.92 with a 4Hz coupling constant. Upon irradiation of the angular (C-10) methyl** protons, an NOE enhancement of the C-12a proton was observed. This latter **observation is possible only if the C-10 methyl group is equatorial to ring B. Taken together, these results clearly demonstrate that ketone 4, to our surprise, has the cis AB ring fusion as shown below.**

Although unusual, several examples of the formation of cis-fused decalones from lithium-ammonia reductions of octalones have been observed. ⁷ In some of these cases, the B ring is constrained to adopt a boat conformation by the presence of a bulky β substituent at $C8$.^{7a} We rationalize that, in the reduc**tion of 3_, the enolate 5 may be initially produced from a rapid reductive desul furization. Examination of molecular models indicates that the B ring of 5. must adopt a boat conformation. In this case, further reduction would give trianion \$ which would be expected to undergo protonation at C5 from the convex 8 face to give 3.**

According to this rationale, formation of the lactone enolate prior to reduction of the enone is solely responsible for the ultimate protonation at C5 from the B face to give cis ring fusion. Therefore, reduction of lactone 7 would be predicted to follow the more conventional course leading to the trans AB ring fusion.

304

Desulfurization of 2 with Raney nickel gave 7⁵ in 88% yield. ^b Lithium ammonia reduction of 7 under the conditions described above gave a single lac**to1 isomer which was oxidized directly (JONES) to provide lactone g5 in 72% overall yield. ⁶ The** ¹ **H NMR spectrum of 8 showed H4, upon irradiation of the C4 methyl protons, as a doublet at 62.33 with an 1lHz coupling constant, consistent with a trans diaxial relationship of H4 and H5. Further support for this structural assignment was provided by catalytic hydrogenation (5% Pd/C; EtOH) of 7 to give keto lactone 9, 5 the C4 epimer of 8. In the presence of potassium t-butoxide, 9 isomerized to provide 8 quantitatively. Apparently, hydrogena- tion of 7 occurred from the a face to give the trans-fused decalone derivative having an axial (3) C4 methyl group.**

These observations provide a unique demonstration of the influence of substrate conformation on the stereochemical outcome of lithium-ammonia reduction of octalone derivatives. To our knowledge, this is the first example in which a common intermediate can serve as precursor for the exclusive formation of either cis- ortrans-fused decalone via a lithium-ammonia reduction.

Completion of the aphidicolin model study was carried out in the following way. Lithium-ammonia reduction of 7 followed by in situ trapping of the enolate with formaldehyde provided ketol 10⁵ in 60% yield.⁶ The lactol was con**verted quantitatively to acetal 115 through the action of a methanolic solution of pyridinium p-toluenesulfonate. Reduction of 11 with L-selectride gave only** diol 1ূ2.⁵ The stereochemistry at C3 and C4 in 1ূ2 was confirmed by ^IH NMR anal**ysis of the bis acetate. Furthermore,** 12 **could readily be converted to aceton-**

ide 13,⁵ whose ¹H NMR spectrum was characteristically similar to the acetonide **derived from aphidicolinone.**

The application of these findings to aphidicolin total synthesis will be reported in due course.

Acknowledgment. We thank the Public Health Service for their generous financial support of our programs.

References and Notes

- **(1) A portion of this work was carried out at Virginia Polytechnic Institute and State University.**
- **(2) Krafft, M.E.; Kennedy, R.M.; Holton, R.A. Tetrahedron Lett. 1986, z, 2087.**
- **(3) (a) Jarvis, J.A.J.; Neidle, S.; Brundet, K.M.; Dalziel, W.; Hesp, B. Chem. Commun.** 1972, **1027; (b) Dalziel, W.; Hesp, 5.; Stevenson, K.M.;** Jarvis, J.A.J. J. Chem. Soc. Perkin I 1973, 2841.
- **(4) Total synt M.A. Tetra Yamamoto, M.A.; Das, Thaisrivon S.R.; Russ Honda, T.; Shiratori, Y.; Fukumoto, K. Tetrahedron Lett. 1980, i66E.i** (h) Cargill, R.L.; Bushey, D.F.; Dalton, J.R.; Prasad, R.S.; Dyer, R.D.; Bond<mark>er, J. <u>J. Org. Chem. 1981</u>, 46, 3389.</mark> **heses: (a) McMurrv,** J.E.; hedron <u>1981</u>, 37, 319 **K. J. Am. Chem. & --- J. Ibid. 1980, 102,** gs, S. <u>Ibid. 1981</u>, 16
el, R.K.; Carlson, J. **iatesta, P.; Lupi, A** ; (bj **1979 1742; 0-3, 24 .G.** Ib .; Bra **other approaches to the to Andrus, A.; Musser,** J.H.; J **Trost, B.M.; Nishimura, Y.; 101, 1328; (c) Corey, E.J. (d) Ireland, R.E.; Godfrey 46: (e) Van Tamelen, E.E.:** <u>vid. 1983</u>, 105, 142; (f) Bet
<u>vetti, D. Helv. Chem. Acta.</u> tal synthesis: (g) Kame **ohnson** ; **Tius** J.D. **tawack to110,** ,s, **T** , ; **YI**
- **(5) Characterized by** IR, **NMR, and combustion or high resolution mass spectral analysis.**
- **(6) Yields refer to isolated, spectrally and chromatographically homogeneous material.**
- **(7) (a) For a review,, see Caine, D. Org. Reactions 1976, B, 1; (b) Sasaki,** S.; Grieco, P.A.; Huffman, J.C.; Callant, P., Imamura, P.M. <u>J. Orq. Chem.</u> **1985, so, 4880; (c) Fringuelli, F,; Taticchi, A.; Fernandez, F.; Kirk, D-N.;** <mark>. scopes, M. <u>J. Chem. Soc</u>.</mark> **Synthetic Reactions"; Perkin I 1974, 1103; (d) House, H.O. "Modern W.Amaminenlo Park, CA, 1970; p. 179.**

(Received in USA 25 July 1986)