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STEREOCONTROL QOF THE METAL-AMMONIA REDUCTION: FORMATION OF EITHER
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Summary: Octalone 2 is reduced by lithium-ammonia to the cis-fused decalone,
whereas octalone 7 undergoes lithium-ammonia reduction to provide exclusively
the trans-fused isomer.

We have recently described a new stereospecific annulation,2 developed dur-

ing the course of our studies directed toward aphidicolin (1)3 total synthe-

This methodology has enabled us to prepare, in two synthetic operations
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as a model for the aphidicolin AB ring

and 67% overall yield, the octalone 22

system.

|
Q

3
0
.
“
.
2

study, we set out to explore the conversion

In an extension of this model
to that present in

of 2 into the diol 3, having A ring functionality identical
1. We envisioned that the 2 - 3 conversion could be accomplished through lith-

jum-ammonia reduction followed by enolate trapping similar to the sequence which
has previously been employed in several aphidicolin syntheses.4a’b’d Further-
more, we anticipated that lithium-ammonia reduction of 2 would also desulfurize

C-8 to form the lactone enolate which would serve to protect the Tactone from

overreduction.
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In the event, enone 2 was treated with 4 mol equiv of Tithium in 5:1
ammonia:THF solution containing 0.85 equiv of t-butanol, first at -78°C for
15 min, then at -33°C for 15 min. Excess lithium was quenched with isoprene
and the mixture was subsequently treated with aqueous sodium bicarbonate to
provide keto ester 4,° mp 200-202°C, in 95% yield.® The "W NMR spectrum of 4
showed H4, upon irradiation of the C-4 methyl protons, as a doublet at 62.92
with a 4Hz coupling constant. Upon irradiation of the angular (C-10) methy]
protons, an NOE enhancement of the C-12a proton was observed. This latter
observation is possible only if the C-10 methyl group is equatorial to ring B.
Taken together, these results clearly demonstrate that ketone 4, to our sur-
prise, has the cis AB ring fusion as shown below.

Although unusual, several examples of the formation of cis-fused decalones
from lithium-ammonia reductions of octalones have been observed.7 In some of
these cases, the B ring is constrained to adopt a boat conformation by the

presence of a bulky B substituent at C8.7a

We rationalize that, in the reduc-
tion of 3, the enolate 5 may be initially produced from a rapid reductive desul
furization. Examination of molecular models indicates that the B ring of 5
must adopt a boat conformation. In this case, further reduction would give
trianion 6 which would be expected to undergo protonation at C5 from the convex
B face to give 4.

According to this rationale, formation of the lactone enolate prior to
reduction of the enone is solely responsible for the ultimate protonation at C5
from the 8 face to give cis ring fusion. Therefore, reduction of lactone 7
would be predicted to follow the more conventional course leading to the trans
AB ring fusion.
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Desul furization of 2 with Raney nickel gave 7° in 88% yield.® Lithium-
ammonia reduction of 7 under the conditions described above gave a single lac-
tol isomer which was oxidized directly (JONES) to provide Tactone §5 in 72%
overall yie1d.6 The ]H NMR spectrum of 8 showed H4, upon irradiation of the C4
methyl protons, as a doublet at 6§2.33 with an 11Hz coupling constant, consis-
tent with a trans diaxial relationship of H4 and H5. Further support for this
structural assignment was provided by catalytic hydrogenation (5% Pd/C; EtOH)
of 7 to give keto lactone g,S the C4 epimer of 8. In the presence of potassium
t-butoxide, g isomerized to provide 8 quantitatively. Apparently, hydrogena-
tion of 7 occurred from the a face to give the trans-fused decalone derivative
having an axial (B8) C4 methyl group.

These observations provide a unique demonstration of the influence of sub-
strate conformation on the stereochemical outcome of lithium-ammonia reduction
of octalone derivatives. To our knowledge, this is the first example in which
a common intermediate can serve as precursor for the exclusive formation of
either cis- or trans-fused decalone via a lithium-ammonia reduction.

Completion of the aphidicolin model study was carried out in the following
way. Lithium-ammonia reduction of 7 followed by in situ trapping of the eno-
late with formaldehyde provided ketol 195 in 60% yield. The lactol was con-
verted quantitatively to acetal 115 through the action of a methanolic solution
of pyridinium p-toluenesulfonate. Reduction of 11 with L-selectride gave only
diol lg.s The stereochemistry at C3 and C4 in 12 was confirmed by ]H NMR anal-
ysis of the bis acetate. Furthermore, 12 could readily be converted to aceton-
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ide 12,5 whose 'H NMR spectrum was characteristically similar to the acetonide

AW

H

derived from aphidicolinone.
The application of these findings to aphidicolin total synthesis will be

reported in due course.
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